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a b s t r a c t 

Challenges in clinical data sharing and the need to protect data privacy have led to the development and popu- 
larization of methods that do not require directly transferring patient data. In neuroimaging, integration of data 
across multiple institutions also introduces unwanted biases driven by scanner differences. These scanner effects 
have been shown by several research groups to severely affect downstream analyses. To facilitate the need of re- 
moving scanner effects in a distributed data setting, we introduce distributed ComBat, an adaptation of a popular 
harmonization method for multivariate data that borrows information across features. We present our fast and 
simple distributed algorithm and show that it yields equivalent results using data from the Alzheimer’s Disease 
Neuroimaging Initiative. Our method enables harmonization while ensuring maximal privacy protection, thus 
facilitating a broad range of downstream analyses in functional and structural imaging studies. 
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. Introduction 

Sharing data across medical institutions enables large-scale clinical
esearch with more generalizable and impactful results. However, di-
ectly transferring data across organizations presents a number of issues
ncluding patient privacy concerns, incompatibility of data formats, and
ardware limitations. In many cases, these concerns prevent data ag-
regation in their complete form. This distributed data setting has mo-
ivated several adaptations of common methods that operate without
he need to share original data across sites. Recent developments have
ncluded distributed clustering ( İ nan et al., 2007 ), logistic regression
 Duan et al., 2020a ), Cox regression ( Duan et al., 2020b ), principal com-
onent analysis ( Al-Rubaie et al., 2017 ), and deep learning ( Shokri and
hmatikov, 2015 ). 

In neuroimaging, performing analyses across multiple institutions
nd scanners can introduce systematic measurement errors, which are
ften called scanner effects. These effects can be introduced by several
canner properties including scanner manufacturer, model, magnetic
eld strength, head coil, voxel size, acquisition parameters, and a wide
ange of other differences across scanners ( Han et al., 2006; Kruggel
∗ Corresponding author at: Penn Statistics in Imaging and Visualization Center, Dep
ania, Philadelphia, PA 19104, United States. 
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t al., 2010; Reig et al., 2009; Wonderlick et al., 2009 ). Differences can
ven persist when scanners have the exact same model and manufac-
urer ( Shinohara et al., 2017 ). 

Distributed analysis methods generally do not account for potential
canner effects or other types of batch effects. However, these effects are
mportant to address and can otherwise lead to spurious associations and
canner-specific data properties that are easily detected using a classifier
 Fortin et al., 2018; Glocker et al., 2019 ). 

To mitigate scanner effects, a wide range of statistical harmoniza-
ion techniques have been tested in neuroimaging data. Many of these
ethods address scanner effects in the mean and variance of voxel in-

ensities or derived features ( Fortin et al., 2018; 2016 ). Among these,
omBat ( Johnson et al., 2007 ) has become a popular harmonization
ethod and has been tested in both structural and functional imaging

 Bartlett et al., 2018; Fortin et al., 2017; Marek et al., 2019; Yu et al.,
018 ). However, none of these methods can be directly applied to dis-
ributed data. 

To enable harmonization in distributed data, we introduce dis-
ributed ComBat (d-ComBat), a distributed algorithm for performing
omBat. We apply our algorithm to the Alzheimer’s Disease Neuroimag-
artment of Biostatistics, Epidemiology, and Informatics, University of Pennsyl- 

ase Neuroimaging Initiative (ADNI) database ( adni.loni.usc.edu ). As such, the 
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ng Initiative (ADNI) dataset and show that our method yields identical
esults to applying ComBat while having the full data at a single location.
ur investigation enables additional downstream distributed methods to
e applied on harmonized data and fulfills the needs for running a com-
lete distributed analysis pipeline in multi-site neuroimaging studies. 

. Methods 

.1. Distributed ComBat 

ComBat ( Fortin et al., 2018; 2017; Johnson et al., 2007 ) seeks to
emove scanner effects in the mean and variance of neuroimaging data
n an empirical Bayes framework. To handle the distributed data set-
ing, we propose d-ComBat as an algorithm that yields adjusted data
dentical to the original ComBat method. Let 𝒚 ij = ( 𝑦 ij 1 , 𝑦 ij 2 , … , 𝑦 ijV ) 𝑇 ,
 = 1 , 2 , … , 𝐾, 𝑗 = 1 , 2 , … , 𝑛 𝑖 denote the 𝑉 -dimensional vectors of ob-
erved data where 𝑖 indexes scanner, 𝑗 indexes subjects within scanners,
 𝑖 is the number of subjects acquired on scanner 𝑖 , and 𝑉 is the number
f features. For simplicity, we assume each site uses a different scanner
nd the data are collected from 𝐾 sites. However, our algorithm could
e easily extended to allow varying number of scanners per site. Our
oal is to harmonize the data from these 𝑁 = 

∑𝐾 

𝑖 =1 𝑛 𝑖 subjects across
he 𝐾 scanners without pooling data at a single processing site. ComBat
ssumes that the 𝑉 features 𝑣 = 1 , 2 , … , 𝑉 follow 

 𝑖𝑗𝑣 = 𝛼𝑣 + 𝒙 𝑇 
𝑖𝑗 
𝜷𝑣 + 𝛾𝑖𝑣 + 𝛿𝑖𝑣 𝑒 𝑖𝑗𝑣, (1)

here 𝛼𝑣 is the intercept, 𝒙 𝑖𝑗 is the vector of covariates, 𝜷𝑣 is the vector of
egression coefficients, 𝛾𝑖𝑣 is the mean scanner effect, and 𝛿𝑖𝑣 is the vari-
nce scanner effect. The errors 𝑒 𝑖𝑗𝑣 are assumed to follow 𝑒 𝑖𝑗𝑣 ∼ 𝑁(0 , 𝜎2 

𝑣 
) .

The original ComBat contains two steps. The first is to standardize
he original features by removing the covariate effects and scaling each
esiduals by its total variance. The second step involves estimating the
canner effects 𝛾 and 𝛿 using an empirical Bayes framework and remov-
ng them from the original data. We propose a distributed algorithm for
ach of the two steps in the next two sections. 

Standardization 

The original implementation of ComBat first standardizes the mean
nd variance of data across scanners via feature-wise least-squares esti-
ation. The standardized data are calculated as 

 𝑖𝑗𝑣 = 

𝑦 𝑖𝑗𝑣 − ̂𝛼𝑣 − 𝑋 𝑖𝑗 𝛽𝑣 

�̂�𝑣 

owever, in the distributed setting we do not have direct access to the
ntire dataset and cannot directly compute estimates for the intercepts

𝑣 , regression coefficients 𝜷𝑣 , scanner-specific mean shifts 𝛾𝑖𝑣 or popu-
ation standard deviations 𝜎𝑣 for each feature. To address this problem,
e propose an estimation procedure that only requires computation and

ransmission of deidentified summary statistics between distributed sites
nd a central location. As in the original ComBat methodology, estima-
ion is performed under the constraint 

∑𝐾 

𝑖 =1 𝑛 𝑖 ̂𝛾𝑖𝑣 = 0 to ensure identifi-
bility. 

For each feature, define 𝜽𝑣 = ( 𝛼𝑣 , 𝜷
𝑇 
𝑣 
, 𝛾1 𝑣 , 𝛾2 𝑣 , … , 𝛾𝐾−1 ,𝑣 ) 

𝑇 
.

hen we can rewrite the data across all 𝑁 subjects 𝒚 𝑣 =
 𝑦 11 𝑣 , … , 𝑦 1 𝑛 1 𝑣 , 𝑦 21 𝑣 , … , 𝑦 2 𝑛 2 𝑣 , … , 𝑦 𝐾𝑛 𝑀 

𝑣 ) 𝑇 as 𝒚 𝑣 = 𝑊 𝜽 + 𝑒 𝑣 where 

 = 

⎡ 
⎢ ⎢ ⎣ 

𝑊 1 
⋮ 

𝑊 𝐾 

⎤ 
⎥ ⎥ ⎦ 
= 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎣ 

1 𝑛 1 𝑋 1 1 𝑛 1 ⋯ 0 𝑛 1 
⋮ ⋮ ⋮ ⋮ 

1 𝑛 𝑀−1 
𝑋 𝐾−1 0 𝑛 𝐾−1 

⋯ 1 𝑛 𝐾−1 
1 𝑛 𝐾 𝑋 𝐾 − 𝑛 1 ∕ 𝑛 𝐾 1 𝑛 𝐾 ⋯ − 𝑛 𝐾−2 ∕ 𝑛 𝐾 1 𝑛 𝐾 −

The ordinary least squares estimate can be obtained via �̂�𝑣 =
 𝑊 

𝑇 𝑊 ) −1 ( 𝑊 

𝑇 𝒚 𝑣 ) = ( 
∑𝐾 

𝑖 =1 𝑊 

𝑇 
𝑖 

𝑊 𝑖 ) 
−1 
( 
∑𝐾 

𝑖 =1 𝑊 𝑖 𝒚 𝑣 ) . By decomposing the
stimation into site-specific summary statistics 𝑊 

𝑇 
𝑖 

𝑊 𝑖 and 𝑊 𝑖 𝒚 𝑣 , 𝜽𝑣 can
e obtained by computing these summary statistics and sending them to
 central location. Construction of 𝑊 𝑖 and calculation of these summary
tatistics are simple for 𝑖 = 1 , 2 , … , 𝐾 − 1 since they are just the usual
2 
 𝑛 1 
 

 𝐾−1 
 𝑛 𝐾 1 𝑛 𝐾 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎦ 

esign matrices 𝑋 𝑖 concatenated with an intercept column and scanner-
pecific columns of ones. To standardize the variance of the data, the
arginal variance is estimated as �̂�2 

𝑣 
= 

1 
𝑁 

∑
ij ( 𝑦 ijv − ̂𝛼𝑣 − 𝑋 ij 𝛽𝑣 − ̂𝛾2 

iv 
) , 𝑣 =

 , 2 , … , 𝑉 , which is decomposable by site. 
Empirical Bayes adjustment 

The key step in ComBat involves use of empirical Bayes estimates of
ite-specific location and scale parameters to remove site effects while
ooling information across features. ComBat assumes that the prior dis-
ributions 𝛾𝑖𝑣 ∼ 𝑁( 𝛾𝑖 , 𝜏

2 
𝑖 
) and 𝛿2 

𝑖𝑣 
∼ Inverse Gamma ( 𝜆𝑖 , 𝜈𝑖 ) where hyper-

arameter estimates �̄�𝑖 , 𝜏𝑖 , �̄�𝑖 , and �̄�𝑖 are obtained via method of mo-
ents. ComBat then finds the conditional posterior means 𝛾∗ 

𝑖𝑣 
and 𝛿∗ 

𝑖𝑣 
,

omputed iteratively through 

∗ 
𝑖𝑣 
= 

𝑛 𝑖 ̄𝜏
2 
𝑖 
�̂�𝑖𝑣 + 𝛿2 

𝑖𝑣 ̄
𝛾𝑖𝑣 

𝑛 𝑖 ̄𝜏
2 
𝑖 
+ 𝛿2∗ 

𝑖𝑣 

2∗ 
𝑖𝑣 

= 

�̄�𝑖 + 

1 
2 
∑

𝑗 ( 𝑍 𝑖𝑗𝑣 − 𝛾∗ 
𝑖𝑣 
) 2 

𝑛 𝑖 

2 + �̄�𝑖 − 1 

Each site’s mean and variance parameter estimates are computed
rom data within that site and so this step is distributed by its nature.
he ComBat-adjusted data is then obtained within each site via 

 

𝐶𝑜𝑚𝐵𝑎𝑡 
𝑖𝑗𝑣 

= 

�̂�𝑣 

𝛿∗ 
𝑖𝑣 

( 𝑧 𝑖𝑗𝑣 − ̂𝛾∗ 
𝑖𝑣 
) + ̂𝛼𝑣 + 𝑋 𝑖𝑗 𝛽𝑣 

lgorithm 

In the distributed setting, ComBat only requires two back-and-forth
ommunications between sites and a central location for estimation of
he standardization parameters. We propose the d-ComBat algorithm
nd illustrate our method in Fig. 1 . 

1. Initiation - broadcast from central site: The central analysis site
chooses identification numbers for each scanner and communicates
these to each location. 

2. Local computation at collaborative sites for mean parameters. 
(a) Each site locally computes scanner-specific summary statistics

𝑊 

𝑇 
𝑖 

𝑊 𝑖 and 𝑊 𝑖 𝒚 𝑣 to the central site ( Fig. 1 a). 
(b) These summary statistics are then sent back to the central site. 

3. Aggregation at central site and broadcast. 
(a) From the scanner-specific summary statistics, the central site

computes �̂�𝑣 . 
(b) The central site then sends �̂�𝑣 to each location ( Fig. 1 a). 

4. Distributed data harmonizations. 
(a) To obtain the global variance estimate, each site transfers∑

𝑗 ( 𝑦 𝑖𝑗𝑣 − ̂𝛼𝑣 − 𝑋 𝑖𝑗 𝛽𝑣 − ̂𝛾2 
𝑖𝑣 
) to the central location, which then

sends back �̂�𝑣 ( Fig. 1 b). 
(b) The remaining ComBat steps are performed within each site to

obtain 𝑦 𝐶𝑜𝑚𝐵𝑎𝑡 
𝑖 

at every location ( Fig. 1 c). 

.2. ADNI data analysis 

Data for our primary analysis are obtained from ADNI
 http://adni.loni.usc.edu/ and processed using the ANTs longitu-
inal single-subject template pipeline ( Tustison et al., 2019 ) with code

vailable on GitHub ( https://github.com/ntustison/CrossLong ). All
articipants in the ADNI study gave informed consent and institutional
eview boards approved the study at all contributing institutions. 

First, we obtain raw T1-weighted images from the ADNI-1 database,
hich were acquired using MPRAGE for Siemens and Philips scanners
nd a works-in-progress version of MPRAGE on GE scanners ( Jack et al.,

http://adni.loni.usc.edu/
https://github.com/ntustison/CrossLong
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Fig. 1. Distributed ComBat illustration. The procedure to perform distributed ComBat harmonization is outlined as follows. a , Each site sends its deidentified summary 
statistics to a central site for estimation of regression coefficients which are then passed back to the sites. b , Each site sends summary statistics to a central site for 
estimation of the population variance which is then passed back to the sites. c , The sites can then use the global regression coefficients and variance estimates to 
perform the remaining ComBat steps and obtain harmonized data. 
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010 ). For each subject, we estimate a template from all the image time-
oints. Each normalized timepoint image undergoes rigid spatial nor-
alization to this single-subject template followed by processing via a

ingle image cortical thickness pipeline consisting of brain extraction
 Avants et al., 2010 ), denoising ( Manjón et al., 2010 ), N4 bias correc-
ion ( Tustison et al., 2010 ), Atropos n-tissue segmentation ( Avants et al.,
011 ), and registration-based cortical thickness estimation ( Das et al.,
009 ). We include the 62 cortical thickness values from the baseline
cans in our primary dataset. 

We then identified scanner based on information contained within
he Digital Imaging and Communications in Medicine (DICOM) headers
or each scan. We consider subjects to be acquired on the same scanner
f they share the scanner site, scanner manufacturer, scanner model,
ead coil, and magnetic field strength. In total, this definition yields
42 distinct scanners of which 78 had less than three subjects and were
emoved from analyses. The final sample consists of 505 subjects across
4 scanners, with 213 subjects imaged on scanners manufactured by
iemens, 70 by Philips, and 222 by GE. These 64 scanners are divided
cross 53 distinct ADNI sites. The sample has a mean age of 75.3 (SD
.70) and includes 278 (55%) males, 115 (22.8%) Alzheimer’s disease
AD) patients, 239 (47.3%) late mild cognitive impairment (LMCI), and
51 (29.9%) cognitively normal (CN) individuals. 

.3. Comparison with ComBat 

We conduct an experiment to compare d-ComBat and ComBat ap-
lied on the full data available at a single location. To emulate a dis-
ributed data setting, we treat each of the 53 ADNI sites as separate
ocations and only enable sharing of summary statistics with a central
ocation. We then apply d-ComBat to this data while including age, sex,
nd disease status as covariates. For the reference ComBat-adjusted data,
e apply ComBat including the same covariates while all of the data is
oused at a single site. 

We also compare these two ComBat outputs by comparing their pa-
ameter estimates, harmonized output data, and run time. Parameter
stimates are compared through the maximum difference between the
wo sets of estimates. We then compare the harmonized data within
ach site and report the maximum error across all sites. For run time,
e compare the ComBat run time with the time elapsed across all d-
omBat steps, including calculations at the central location. 

. Results 

We ran d-ComBat and ComBat in R on a laptop computer running
acOS Catalina version 10.15.7 with a 2.3 GHz 8-Core Intel Core i9 pro-

essor. d-ComBat ran in 387 ms across all sites and steps versus ComBat
3 
hich took 40 ms. The average run time within each site was 7.04 ms
nd the central site took 6 ms to compute the necessary estimates. 

Fig. 2 compares the empirical Bayes parameter estimates and regres-
ion coefficients obtained from each method, showing no visible dif-
erences across all parameters. The maximum percent differences be-
ween estimates were 4 . 17 × 10 −10 for location parameters, 1 . 72 × 10 −13 
or scale parameters, and 1 . 19 × 10 −11 for regression coefficients. 

The harmonized data were identical between the two methods. We
ound that the maximum percent difference between any two data points
cross the 53 locations was 2 . 75 × 10 −13 . 

. Discussion 

Challenges in data sharing across institutions have inspired dis-
ributed algorithms for statistical analysis and machine learning. We
ontribute to this growing base of methods by introducing distributed
omBat for harmonization of data housed in clinical sites. To the best
f our knowledge, this is the first harmonization method adapted for
his setting. Compared to ComBat, we demonstrate that d-ComBat yields
dentical parameter estimates and harmonized output data. 

Unlike ComBat, d-ComBat requires two round of communications
ith a central location, which requires coordination and sharing of dei-
entified summary statistics between sites. These additional steps result
n greater total run time across all sites, but very short run times at
ach site. In practice, the execution time of d-ComBat will also depend
n the transfer speed of summary statistics to the central location and
he speed of individuals running the code at each site. The total time
o run d-ComBat is likely greater than running ComBat while having
ata at a single location, but this additional time is expected given the
omplexities of a distributed data setting. Further investigation into ap-
roximating the standardization step in one communication step could
reatly improve the ease of using d-ComBat. 

For distributed Combat, only aggregated statistics are communi-
ated, and the re-identification risk for the patients is expected to be
ow. In the future, we plan to formally quantify the re-identification risk
igorously, and enhance our algorithms via techniques including differ-
ntial privacy ( Dwork et al., 2016; Dwork and Roth, 2014; Wasserman
nd Zhou, 2010 ). Future studies could also adapt other harmonization
ethods for distributed data, including extensions of ComBat for longi-

udinal data ( Beer et al., 2020 ), nonlinear associations ( Pomponio et al.,
020 ), and covariance effects ( Chen et al., 2021 ). 

. Software 

All of the postprocessing analysis was performed in the R statisti-
al software (V3.6.1). Distributed ComBat is implemented in R ( https:

https://github.com/andy1764/Distributed-ComBat
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Fig. 2. Distributed ComBat parameter estimates. Scatter plots compare parameter estimates from distributed ComBat versus those obtained from ComBat with all data 
at one location. a and b show empirical Bayes point estimates for location and scale respectively. c displays the regression coefficients obtained from each method. 
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/github.com/andy1764/Distributed-ComBat ). Reference implementa-
ions for ComBat are available in R and Matlab ( https://github.com/
fortin1/ComBatHarmonization ) and in Python ( https://github.com/
fortin1/neuroCombat ). 
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